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Abstract
Recently the effect of stiffness, or semi-flexibility, on the adsorption and also
the collapse phase transitions of isolated polymers has been explored via the
exact solutions of partially directed walk models. Here we consider its effect
on the stretching transition mediated by the application of a force to one end of
the polymer when the other end is attached to an adsorbing wall.

PACS numbers: 05.50.+q, 05.70.fh, 61.41.+e

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The adsorption of polymers on a sticky wall, or walls, and more recently the pulling, or
stretching, of a polymer away from a wall has been the subject of continued interest [1–10].
This has been in part due to the advent of experimental techniques that are able to micro-
manipulate single polymers [11–13] and the connection to modelling DNA denaturation
[14–20].

When a polymer in a dilute solution of ‘good’ solvent, so that it is in a swollen state [21],
is attached to a wall at one end, the rest of the polymer drifts away due to entropic repulsion. It
otherwise acts as if it were a free polymer. If the wall has an attractive contact potential so that
it becomes ‘sticky’ to the monomers of the polymer, the polymer can be made to stay close
to the wall by a sufficiently strong potential or at low enough temperatures. The second-order
phase transition between these two states is the adsorption transition. The high-temperature
state is desorbed while the low-temperature state is adsorbed. This pure adsorption transition
has been well studied [1–3, 22, 23] exactly and numerically and demonstrated to be of second
order.

The introduction of a pulling force away from the surface adds a third phase to this two-
phase adsorption problem [5, 6, 8]. So, in addition to the desorbed and the adsorbed phases
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a new phase, the stretched phase, where the polymer is stretched vertically away from the
wall also appears in the phase diagram. In fact, the free desorbed phase only occurs when
the vertical force is zero [5, 6]. At high temperatures any vertical force causes the polymer
to be stretched vertically. At low temperatures, when at zero force the polymer is adsorbed,
for sufficiently large forces away from the surface the adsorbed polymer can be made to go
through a first-order transition to the stretched state.

The effect of stiffness, that is the consideration of semi-flexible polymers, has been
examined in various contexts for both exactly solved lattice models [24–27] and canonical
lattice models [28, 29]. In the exactly solved model of interacting partially directed
self-avoiding walks (IPDSAW) the addition of stiffness was shown [26] to modify the
associated phase transition of polymer collapse from second order (tricritical-like) to first order
immediately upon application. Recently the effect of stiffness on the adsorption transition
for partially directed walks was also examined via an exact solution [27]. For adsorption the
effect of stiffness does not change the order of the transition though it does enhance the effect
of the adsorbing potential, making it ‘easier’ to adsorb stiffened polymers.

Here we study the related exactly solvable model for polymer stretching, namely the
partially directed self-avoiding walk (PDW) attached to a sticky wall with the addition of
stiffness, and being stretched both horizontally and vertically. Hence we consider the effect
of stiffness and horizontal elongation on the stretching problem described above. We also
compare the effect of horizontal elongation to the effect of stiffness. The work here builds
on various works in the literature and being currently undertaken [1, 27, 30–32]. The results
here give a four-dimensional phase diagram in surface binding potential, stiffness, horizontal
elongation force and vertical force.

2. Model

Consider a square lattice and a self-avoiding walk of L steps such that it has one end fixed at
the origin of the lattice. If (xi, yi) are the coordinates of the sites of the lattice occupied by
walk for i = 0, 1, . . . , L, then (x0, y0) = (0, 0). Now restrict the configurations considered to
self-avoiding walks such that starting at the origin only steps in (1, 0), (0, 1) and (0,−1) are
permitted: such a walk is known as a partially directed self-avoiding walk (PDW). Immediately
we note that xi � 0. We introduce a surface at y = 0 by considering only those walks with
every site of the walk lying on the upper half-plane with yi � 0 for all i. For convenience,
we consider walks whose last step is horizontal. An example configuration, along with the
associated variables of our model, is illustrated in figure 1. We note that our walks may end
at any height above the surface.

We add an energy for steps of the walk that lie on the surface (wall) to give the adsorbing
polymer model: see figure 1. An energy −J is added for each such visit. We define a
Boltzmann weight κ = eβJ associated with these visits, where β = 1/kBT , kB is Boltzmann’s
constant and T is the absolute temperature. We also add an energy −� to each site (stiffness
site) between consecutive horizontal steps of the walk: see figure 1. For � > 0 consecutive
horizontal steps are favoured and so this is the positive stiffness, or the semi-flexible, regime.
For � < 0 consecutive horizontal steps are discouraged, so this is a negative stiffness regime
where bends are encouraged.

We have chosen to weight horizontal straight segments in our stretching model to mimic
the collapse and adsorption models previously analysed [26, 27]. On the other hand, one
may model stiffness, perhaps more naturally, by rather introducing a weighting for bends of
the walk. In fact, our model is equivalent to one where bends are weighted and a rescaled
horizontal force is applied [27]. As can be seen below, the application of any horizontal force
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stiffness parameter sites

κ

σ

surface visit steps

σ
fx

fy

Fixed end at origin

Figure 1. An example of a partially directed walk of length L = 20, width N = 8 and whose
rightmost horizontal step is at height r = 2 above a surface, with the parameters κ associated
with ‘visits’ of walk steps with the surface and the stiffness parameter σ associated with the sites
(highlighted) between two consecutive horizontal steps. A force fx is applied horizontally to the
non-fixed end giving rise to a Boltzmann factor pN, while a force fy is applied vertically to the
non-fixed end giving rise to a Boltzmann factor hr. The Boltzmann weight of the configuration
shown is κσ 2h2p8.

does not change the type of phase transition. We note however that while adding stiffness
to vertical segments will not change the nature of the phase transitions which is our primary
focus here, it will change the shape of critical temperature plots: in particular enhancing
vertical stiffness will enhance the relative effect of the vertical force and make adsorption
more difficult.

If � is the number of such stiffness sites in a particular PDW, then such a configuration
is associated with an additional Boltzmann factor σ � where σ = eβ�. A force fx is applied
horizontally to the non-fixed end giving rise to a Boltzmann weight factor per unit horizontal
extension of the walk p = eβfx . A force fy is applied vertically to the non-fixed end giving rise
to a Boltzmann weight factor per unit vertical extension of the walk h = eβfy .

The polymer partition function PL(κ, σ, p, h) for configurations of our model is

PL(κ, σ, p, h) =
∑

PDW ψL of length L

κm(ψL)σ �(ψL)pN(ψL)hr(ψL), (2.1)

where m(ψL) is the number of steps of the walk configuration ψL on the surface, �(ψL) is
the number of stiffness sites, N(ψL) is the horizontal width of the walk and r(ψL) is the
height of the end of the walk. The coordinates of the site being pulled are (N, r) and so the
end-to-end displacement has the components N and r in the x and y directions, respectively.
The generating function F(z, κ, σ, p, h) we shall calculate is

F(z, κ, σ, p, h) =
∞∑

L=1

PL(κ, σ, p, h) zL. (2.2)

The singularity structure of the generating function as a function of z determines the free
energy. The reduced free energy is defined as

f (κ, σ, p, h) = − lim
L→∞

1

L
log(PL(κ, σ, p, h)) (2.3)

and is given by

f (κ, σ, p, h) = log zs(κ, σ, p, h), (2.4)
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Figure 2. A plot of the Boltzmann weight associated with the critical vertical force ht (κ) against κ

for fully flexible polymers (σ = 1) and no horizontal force (fx = 0). As κ → (1+1/
√

2)+ we have
that ht (κ) → 0 since without a force the adsorption transition takes place at κ = κA = 1 + 1/

√
2

for the PDW.

where zs(κ, σ, p, h) is the closest singularity (on the positive real axis) of the generating
function F(z, κ, σ, p, h) in the variable z to the origin.

3. Characterization of the phases

From [5, 27, 30] we do not expect that the introduction of stiffness and horizontal elongation
will introduce new phases into the adsorption/stretching problems. As mentioned in the
introduction we expect three phases: a free desorbed phase that occurs when fy = 0 (h = 1)
at high temperatures (small κ); an adsorbed phase that occurs when κ is large and h is small
enough; and a stretched phase that occurs when a sufficient positive vertical force is applied.

Without stiffness (σ = 1) and horizontal elongation (p = 1) there is a single adsorption
transition at κ = κt when h = 1 [1]. This occurs at κt = 1 + 1/

√
2 for the PDW. When h > 1,

there is a transition between the stretched and adsorbed phases at h = ht (κ), or alternatively
κ = κt (h). Figure 2 shows a plot of the critical Boltzmann weight ht associated with the
force fy against the Boltzmann weight controlling the stickiness of the wall κ for our partially
directed walk model without stiffness (σ = 1) or horizontal elongation (p = 1). We have that
ht (κ) > 0 only when κ > 1 + 1/

√
2 and is an increasing function of κ .

For the sake of comparison, in terms of the physical variables, temperature and vertical
force, the variation of the critical force with temperature is given in figure 3.

Two key thermodynamic quantities, M and R, can be defined that describe the phases of
the system. Firstly, M is the average number of steps of the walk located on the surface per
step of the walk

M(κ, σ, p, h) = lim
L→∞

〈m
L

〉
= lim

L→∞

∑
ψL

m(ψL)κm(ψL)σ �(ψL)pN(ψL)hr(ψL)

LPL(κ, σ, p, h)
, (3.1)

which implies

M(κ, σ, p, h) = lim
L→∞

κ

L

d log(PL(κ, σ ))

κ
= −κ

d log zs(κ, σ, p, h)

dκ
. (3.2)
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Figure 3. A plot of the critical force against temperature for fully flexible polymers with � = 0.
We have normalized J/kB = 1 and chosen fx = 0.

Hence the variation of zs with κ is directly related to the average occupation of the surface by
the walk. Secondly, R is defined as

R(κ, σ, p, h) = lim
L→∞

〈 r

L

〉
=

∑
ψL

r(ψL)κm(ψL)σ �(ψL)pN(ψL)hr(ψL)

LPL(κ, σ, p, h)
, (3.3)

which implies

R(κ, σ, p, h) = lim
L→∞

h

L

d log(PL(κ, σ, p, h))

h
= −h

d log zs(κ, σ, p, h)

dh
, (3.4)

where r is the height of the end of the walk from the surface. Hence, the variation of zs with
h is directly related to the average height of the endpoint from the surface by the wall.

In the desorbed phase we have M = R = 0, in the adsorbed phase M > 0 while R = 0,
and in the stretched phase R > 0 while M = 0. Hence one can use R and M as order
parameters for the phase transitions in the system.

We expect the desorbed and adsorbed phases along with the adsorption transition to occur
when there is no vertical force h = 1 for all σ and p. So let us define the position of
adsorption transition as occurring at κA(σ, p) with κA(1, 1) = 1 + 1/

√
2. Once h > 1 we

expect the two phases stretched and adsorbed with a transition occurring at κt (σ, p, h). We
expect limh→0 κt (σ, p, h) = κA(σ, p) and so use κt (σ, p, 1) = κA(σ, p).

A more refined description of the phases and the adsorption critical point can be obtained
by consideration of various exponents. Let us define the following exponents: for L → ∞
we expect

PL ∼ Aef (κ,σ,p,h)LLγ11−1, (3.5)

alternately via the generating function F(z) ∼ B(zs − z)−γ11 as z → z−
s ,

〈m〉 ∼ CLφs , (3.6)

〈N〉 ∼ DLν‖ (3.7)

and

〈r〉 ∼ ELν⊥ . (3.8)
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r1

r2

r3

r4 r5

r7

r6 r8

= 2,m = 1, r8 = 2,N = 8,L = 20

Figure 4. An example of a partially directed walk given by the values of the defining variables
ri, i = 1, . . . , 8. These give the heights of the horizontal steps above the surface: here we have
r1 = 1, r2 = 4, r3 = 0, r4 = r5 = r6 = 2, r7 = 1, r8 = 2. The generating function weight of this
configuration is x8y12κσ 2h2p8.

At the adsorption critical point the exponent φs becomes the crossover exponent φ = 1/2
for the transition [2]. From the solution of the model when σ = p = 1 [1, 30] the
desorbed phase can be seen to exhibit γ11 = 1/2, φs = 0, ν‖ = 1, ν⊥ = 1/2 while the
adsorbed phase has γ11 = 1, φs = 1, ν‖ = 1, ν⊥ = 0. At the adsorption transition γ11 = 1,

φs = 1/2, ν‖ = 1, ν⊥ = 1/2. From work on similar models [5] the stretched phase has
γ11 = 1, φs = 0, ν‖ = 1, ν⊥ = 1.

4. Solution setup

To solve for our generating function we define the configurations of our PDW through a set of
variables ri describing the height of each horizontal step of our walk in column i of our lattice:
here column i is bounded by vertices of the lattice with x-coordinates i −1 and i. See figure 4.
The energy of a configuration is

−βE(r0; r1, . . . , rN) = βJ

N∑
i=1

δri ,0 + β�

N∑
j=1

δrj−1,rj
+ βfx

N∑
j=1

1 + βfyrN, (4.1)

where we define r0 = 0 for convenience.
Now let us define a restricted energy

−βĒ(r0; r1, . . . , rN) = βJ

N∑
i=1

δri ,0 + β�

N∑
j=1

δrj−1,rj
. (4.2)

For calculational convenience we define the partial generating functions for paths of fixed
width N with ends fixed at heights r0 = 0 and rN � 0. Defining a fugacity y for vertical steps
we define the ‘finite-width’ generalized partition function as

Z1(r1) = yr1 exp(−βE(0; r1)) (4.3)

and

ZN(rN) =
∑

r1,...,rN−1�0

yL−N exp(−βE(0; r1, . . . , rN)), N = 2, 3, . . . . (4.4)

Let us also define

Z̄1(r1) = yr1 exp(−βĒ(0; r1)) (4.5)

6



J. Phys. A: Math. Theor. 43 (2010) 225002 A L Owczarek

and

Z̄N(rN) =
∑

r1,...,rN−1�0

yL−N exp(−βĒ(0; r1, . . . , rN)), N = 2, 3, . . . . (4.6)

We immediately have that

ZN(r) = pNhrZ̄(r). (4.7)

Let x = px̂. We define the generating function for walks that end at a fixed height r as

Gr(x, y, κ, σ, h) =
∞∑

N=1

ZN(r)x̂N = hr

∞∑
N=1

Z̄N(r)xN . (4.8)

Letting

Gr = hrgr (4.9)

the generating function we need is

G(x, y, κ, σ, h) =
∞∑

r=0

Gr(x, y, κ, σ, h) =
∞∑

r=0

hrgr(x, y, κ, σ ). (4.10)

We are interested in finding the generating function

F(z, κ, σ, p, h) = G(pz, z, κ, σ, h) =
∞∑

r=0

hrgr(pz, z, κ, σ ). (4.11)

5. Exact solution of the generating functions

5.1. Intermediate results

Importantly the generating function gr(x, y, κ, σ ) was calculated in [27] as

gr(x, y, κ, σ ) = Aλr−1
Z for r � 1 (5.1)

and

g0(x, y, κ, σ ) = wu + wu
A

1 − yλZ

. (5.2)

Here λZ ≡ λZ(x, y, σ ) while A ≡ A(x, y, κ, σ ).
Defining

u = x

1 − x(σ − 1)
, (5.3)

v = κ(1 − x(σ − 1))

1 − xκ(σ − 1)
, (5.4)

w = v

1 − vu
, (5.5)

ρ(u, y) =
(

y +
1

y

)
+ u

(
y − 1

y

)
= 1

y
[1 + y2 − u(1 − y2)] (5.6)

and

λZ = λ̂(u, y) = 1

2
(ρ −

√
ρ2 − 4)

= 1

2y

[
1 + y2 − u(1 − y2) −

√
[(1 + u2)(1 − y2) − 2u(1 + y2)](1 − y2)

]
. (5.7)

7
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Note that

λ̂2 − ρ(u, y)λ̂ + 1 = 0; (5.8)

we have

A = uy(1 + wu)(1 − yλ̂)

1 − yλ̂ − u[1 + wuy2]
. (5.9)

Now using the same underlying algebra as in [27] we have

g0(x, y, κ, σ ) = κu(1 − y2)

1 − uv(1 − y2) − yλ̂(u, y)
. (5.10)

Hence the generating function we require is

G(x, y, κ, σ, h) = g0 +
∞∑

r=1

hrgr = g0 + A

∞∑
r=1

hr λ̂r−1 = g0 +
Ah

1 − hλ̂
(5.11)

giving

G(x, y, κ, σ, h) = u(1 − y2)[(1 − v)λ̂(u, y) + v]

[1 − uv(1 − y2) − yλ(u, y)](1 − hλ̂(u, y))
. (5.12)

5.2. The full solution

This gives the main result of this paper as the full generating function in terms of the original
variables as

F(z, κ, σ, p, h) = pz(1 − y2)[(1 − κ)λ + κ(1 − pz(σ − 1)))]

(1 − pz(σ − 1))[(1 − zλ)(1 − κpz(σ − 1)) − κpz(1 − z2)](1 − hλ)

(5.13)

with

λ ≡ λ(z, σ, p) = 1

2z

[
1 + z2 − u(1 − z2) −

√
[(1 − z2)(1 + u2) − 2u(1 + z2)](1 − z2)

]
,

(5.14)

u(z, σ, p) = pz

1 − pz(σ − 1)
. (5.15)

6. Analysis of the phase diagram

As we have argued that the behaviour is essentially dependent on whether h = 1 or not, we
consider these cases separately.

6.1. Analysis for h = 1

We expect a single adsorption transition between desorbed polymers at small κ and adsorbed
polymers at large κ . This analysis generalizes the results in [27] to the case p �= 1 and
similarly the results in [31] to the case σ �= 1. The algebraic singularity arising from λ occurs
when the discriminant is zero at z = zd : namely, at(
[1 − p(σ − 1)zd ]2 + p2z2

d

)(
1 − z2

d

) − 2pzd

(
1 + z2

d

)
(1 − p(σ − 1)zd) = 0. (6.1)

8
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Figure 5. A plot of the desorbed singularity value zd (σ, p) against σ and p.

This can be factorized to show that the desorbed singularity zd obeys

1 − (pσ + 1)zd + p(σ − 2)z2
d = 0. (6.2)

This gives

zd(σ, p) = 1 + pσ −
√

1 + 8p − 2pσ + p2σ 2

2p(σ − 2)
. (6.3)

One can readily discover that the solution zd(σ, p) is a monotonically decreasing function of
σ at fixed p and a monotonically decreasing function of p at fixed σ : see figure 5. Note that
λ(zd(σ, p), σ, p) = 1.

The other singularity, which gives rise to a simple pole in the generating function away
from the transition, occurs when

(1 − zλ)(1 − zκp(σ − 1)) − κpz(1 − z2) = 0, (6.4)

that is,

κ = (1 − zλ)

pz(1 − z2) + (σ − 1)pz(1 − zλ)
, (6.5)

giving z = za(κ, σ, p) (the adsorbed singularity) implicitly.
The two singularities coincide when za = zd with λ = 1, that is,

κt (σ, p) = 1

p
(
σzd + z2

d

)

= 4p2(σ − 2)2

[1 + pσ − √
1 + p(8 + σ(pσ − 2))][1 − p(1 + 2p(σ − 2))σ − √

1 + p(8 + σ(pσ − 2))]
.

(6.6)

A surface plot of κt (σ, p) can be found in figure 6. The function κt (σ, p) is a monotonically
decreasing function of σ at fixed p and a monotonically decreasing function of p at fixed σ (see
figure 7). Hence the sticky potential needed to adsorb the polymer on the wall decreases with
increasing stiffness and with increasing elongation (horizontal) force: it is easier to adsorb
stiff or elongated polymers. As an aside, it should be stressed that κt (σ, p) is an analytic

9
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Figure 6. A surface plot of κt (σ, p) against σ and p.
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1.4

1.5

1.6

κ t

Figure 7. A plot of κt (σ, p) against σ for p = 2.0 (left) and a plot of κt (σ, p) against p for
σ = 2.0 (right).

function of σ for positive real σ including σ = 2. In figure 8 we also show two plots in terms
of the physical variables temperature T and horizontal force fx of the effect of an horizontal
force on the critical temperature (we have normalized J/Kb = 1). The effect of horizontal
stiffness is the increase in the critical temperature, as one might expect.

The adsorbed singularity only occurs when κ � κt and for κ > κt it is the closest
singularity to the origin. In figure 9 we have zs(κ, 1.5, 1.5) plotted against κ: the smooth
transition at κ ≈ 1.2921 is visible.

Regardless of σ and p it is crucial to realize that λ has the expansion

λ = 1 − c
√

(zd − z) + O((zd − z)) (6.7)

for z → z−
d . By expanding the denominator factor (6.4) about z = zd and κ = κt and

assuming z < zd and κ > κt one can deduce that

za = zd − c2(κ − κt )
2 + O((κ − κt )

3). (6.8)

10
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Figure 8. A plot of the critical temperature Tt against a horizontal force (vertical axis) for fully
flexible polymers with � = 0 (left) and for semi-flexible polymers with � = J (right). We have
normalized J/kB = 1.

1.1 1.2 1.3 1.4 1.5 1.6
κ

0.22

0.24

0.26

0.28

zs

Figure 9. A plot of zs against κ for σ = p = 1.5. At σ = p = 1.5 we have the desorbed value
zd (1.5, 1.5) = 0.288 487 . . . . The value of κ at the transition is κt (1.5, 1.5) = 1.2921 . . . .

Since zs = zd for κ < κt this implies that the specific heat exponent α = 2, that is, the
adsorption transition is of second order. It also implies that M vanishes linearly with (κ −κt ).

6.2. Analysis of full model

We now expect three phases as described in the previous sections. This generalizes the work
in [32] to the case p �= 1. When h �= 1, a third potential singularity zh(σ, p, h) arises in the
generating function at

λ(zh, σ, p) = 1/h, (6.9)

that is, using the fact that λ + 1/λ = ρ, the solution of the cubic is

(σ − 2)hpz3 − (p(1 + h2)(σ − 1) + h)z2 + (1 + h2 + hpσ)z − h = 0. (6.10)

One needs to be careful in taking the smallest positive solution of the equation since the
coefficient of the cubic term changes sign as σ moves through 2. For σ = 2 one has a
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Figure 10. A plot of the stretched singularity value zh(σ, p, h) against h for σ = p = 1.5. The
limit limh→0 zh(1.5, 1.5, h) = 0.288 487 . . . = zd (1.5, 1.5).
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Figure 11. A surface plot of the stretched singularity value zh(2.0, p, h) against p and h.

quadratic and so a simple expression for zh as

zh(2, p, h) = 1 + h2 + 2hp −
√

1 − 2h2 + h4 + 4h2p2

2(h + p + h2p)
. (6.11)

The generating function has a simple pole at zh. A plot of zh(1.5, 1.5, h) can be found in
figure 10, while a surface plot of zh(2.0, p, h) can be found in figure 11. As we know that
λ = 1 when the discriminant of equation (5.14) vanishes and also that λ is an increasing
function of z, we deduce that for h > 1 we have

zh < zd (6.12)

and hence a new phase structure emerges. Note that since zh is a non-constant function of h,
we have R �= 0 via equation (3.4).
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Figure 12. A plot of κt (σ, p, h) against σ for h = 2 when p = 1.5 (left) and a plot of κt (σ, p, h)

against p for h = 2 when σ = 1.5.

The singularity at zh is associated with a polymer that is stretched away from the surface
rather than simply freely unbound, as happens at zd . Since for any σ and p zh < zd when
h > 1, the desorbed singularity plays no role in the analysis of the h > 1 problem: the
desorbed phase does not appear when a vertical force is applied.

On the other hand, the adsorbed singularity za which is independent of h is still dominant
(that is, when za is the closest singularity to the origin) for large enough κ . From our analysis
of the h = 1 case we have the location of the adsorbed singularity z = za(κ, σ, p) via

κ = (1 − zλ)

pz(1 − z2) + (σ − 1)pz(1 − zλ)
. (6.13)

In the adsorbed phase R = 0 since za is independent of h.
The stretched singularity, zh, coincides with the adsorbed one, za , when za = zh, that is,

κt (σ, p, h) = (1 − zh/h)

pzh

(
1 − z2

h

)
+ (σ − 1)pzh(1 − zh/h)

. (6.14)

As with h = 1, for h > 1 the function κt (σ, p, h) is a monotonically decreasing function of σ

at fixed p and a monotonically decreasing function of p at fixed σ : plots of κt (σ, p, h) can be
found in figure 12.

At fixed σ and p the position of the adsorbed singularity za(κ, σ, p) does not change with
h, though it decreases with increasing κ . Since zh decreases with h, the value of κ which
gives za = zh must increase with h. That is, we have argued that κt (σ, p, h) is an increasing
function of h at fixed σ and p. One can also consider the value of h at the stretching transition
for fixed large κ . Equation (6.14) can be inverted to find that transition value of h, which we
denote as ht (κ, σ, p). A plot of ht (κ, 1.5, 1.5) is given in figure 13. Clearly, since κt increases
with h, this means that ht increases with κ .

In figure 14 there is a surface plot of κt (2.0, p, h) against p and h. Note that κt increases
with h and decreases with p and so if a polymer is pulled at a fixed small angle, it can be
adsorbed even though it is being pulled off the surface: this result generalizes the intriguing
observation1 made by Osborn and Prellberg [31] for σ = 1.

Recalling κA(σ, p) = κt (σ, p, 1) we have that the adsorbed singularity only occurs when
κ � κA. However, it is only for κ > κt > κA that it is the closest singularity to the origin. In
figure 15 zs(κ, 1.5, 1.5, 2) is plotted against κ . The transition, which is marked by an abrupt

1 We also direct the interested reader to Osborn and Prellberg [31] for the description of this in terms of the physical
variables temperature, horizontal and vertical forces.
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Figure 13. A plot of ht (κ, p, h) against κ for σ = p = 1.5.
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Figure 14. A surface plot of κt (2.0, p, h) against p and h.
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Figure 15. A plot of zs against κ for h = 2 with σ = p = 1.5. The stretched value
zh = 0.251 233 . . . . There is a sharp change in the slope of the curve at κt = 1.688 59 . . . .
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change in the slope of zs , occurs at κt = 1.688 59 . . . . This abrupt change of slope is a sign
of a first-order transition. To see this more generally we see that λ(z, σ, p) is a monotonically
increasing analytic function of z for 0 � z � zd(σ, p). Since zh < zd clearly

λ = 1/h + c1(zh − z) + O((zh − z)2) (6.15)

for z near zh. Analysing equation (6.13) near κt , this implies that for κ ≈ κt

za = zh − c2(κ − κd) + O((κ − κd)
2). (6.16)

Since zs = zh for κ < κt when h > 1, this implies that the specific heat exponent α = 1, that
is, the adsorption transition is of first order regardless of σ and p.

The other exponents γ11, ν‖, ν⊥ and φs for each of the phases do not depend on σ and p
other than via the location of those phases.

7. Conclusions

We have considered a partially directed walk model of a semi-flexible polymer, attached at
one end to a sticky surface, that is being stretched both horizontally and vertically. The main
results of our work stem from the exact solution of the model, the nature of the associated
phase transitions and the comparisons with earlier works [26, 27]. Additionally, our physically
relevant conclusions are that while increasing the vertical force increases the potential energy
needed at the surface for adsorption, both the horizontal elongation force and stiffness decrease
the energy needed. This leads to a competition between either horizontal forces or stiffness
and vertical forces in the adsorption of a polymer. While we have analysed a directed model
of a polymer, it should be noted that when a horizontal force is applied to an isotropic swollen
polymer it becomes directed, and so our results should have application to physical two-
dimensional systems. Related work on DNA denaturation [33] highlights another possible
application of the work on these types of models.
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